
Supplementary Table 1: FISH probes 

Gli1 Intron Gli1 Exon1 Gli1 Exon2 RG6 Intron 
AATCTAGGGAGGGATGGGT AGACGGCGAGACACAGGTG CAATCCGGTGGAGTCAGAC GAGGTGGAGAGATGGAACAA 

AACTAGGACCCTACCTTGA GGCTGACTGTGTAAGCAGA TTCACTGGGGTGGGCATTG GACCCGCGATTTATTCACAG 

GGAAGGAACTTTGAGGCCA GAAAGGGGATGCCAGGGAG GAAAACAGAGGCTGCGGGC AGGGAAAGGCACAGGACACA 

GTCGATACAGTCTTCAGCG AGGCCAGGTAGTGACGATG TGAGGGAGCTGGGGATGAT TGAAAGGAAAGCGTTTCCCA 

CCACCCCACAAAAATGCAA ATGTAGTGCTGAGCAGGTG GACCCGACTGGGGATACTG GGATGGGGAGAGCGCAAAAA 

CCATATACACACCTTGGGA GAAGCATATCTGGCACGGA CATGGGGAGGCTGAGGATA CAGAACTGAGAGCAGGTTGG 

CTGAGAGTTGTCCTCTGAC CAGGCTGTGAGCTGCAGTG CTGGGTTCTGTTGAGAGAT GTGTTGGGATGGAAGACAGA 

TGCTTTTGATCTCCAGGAC ACAGAAAGACCTCCCATCC AGGGGTTGAAATTGAGGCC AAGAAGACAGCAACCCAGGG 

AAGTGTCTTTAGCCAAGCC GTTCGGCTTCTCCAAGGAG GTCCTGTGGAATGAGAGGA TCCCACAGCAAGAGAGGAAG 

CATTTTAGGGCCAGCAAGA CTGCATTTGGGTTGTATCC ACACCAGCTGAGCTTTGAG ACGAGAGTCCTCTGTCAGAG 

TGTGTACCACCATACCAAA ACATCCCAGGCTCTTGAAC GCTGCGACTGAACGTAATT ACACTGCTGGAGCATTTTTC 

CTTCACAAGTGCTAGGGTT GTGGTGGGGATCGAAGTTC TTCCCTCCCACAACAATTC TATGGCATAAATCTCCTGCA 

CTCTTGATCTTCCTGACTC GGCTGTGGCGAATAGACAG ATGGGAGTTCCTGGTTGGG CCATGCAGCAGAGAGCAAAA 

TTTTTTGAGACCTAGCCTC TCCATGGCAACATTTTCGG CCAGAAACTTGGGGCTCTG AGAGTGGGGGAGATCGACTT 

TTCTAGCACCTTGCTTTTG CCCATCACAGAAGTTCCAA GGCTCTGACTAACTTGGGA TAAATCCAAGGACTCGGAGC 

GAACACAATGCCACTGACC CATGTATGGGTTCAGACCA AAGCCAGATCCATATGCTG TACCTGAAGGTAAGGCATGG 

GCTGGGGATTGAACTCAGA CCAGAGTATCAGTGGAGGA CTGATTTGTGATTGGCCGA AGTAAAGGGCTCTGTTCAGG 

GGTCATGAGCTAGCATGTA TAGCTTCATAAGGCTCAGC GTGAAGGGGCAGGATAGGA GCTATGGGAGAAAGAAGCAG 

GACAGAAGAGGGCAGCAGA AAGAGGCAGGGAACCTGGA CCCACGGTGAAAGTTTCAT TCCAGGAGACCCGAAGAGAG 

ATGAGTGCTCTATCTGCAT CCATAGTTGGTTGGTGGAC CTGTGGGAAGGCCTGTTTA AGAATGGACAACCGTGGCAC 

CCTGGTTTGGTTTTTGTTT GGATCAGGATAGGAGACCT AGAAGTCGGGGTGGTGCTG TAAGGACAGGGTCAGTAGGA 

TGGGATTAAGGGTGTGTGC CCCAGCATGAGAAGGGAAC CATAGCAAGGGGACAGCGG  

AAGAGTTCTGACTGCCTGT AGCCTTATTGCTAGGGTAC CACAGCTGGGGTTGGTATC  

GACCAGACTGGCCTAAGAG GTCGAGGACACTGGCTATA TCAGGAGGAGGGTACAAGG  

TATCCTGGAGCTCATCATG GCACTTGTCCATAATGCTC AGTCCAGAGCGTTACACAC  

CTTATCAGATCGAGCCTCA ACCCTTGTTCTGGTTTTAC GAGTGTTGTCCAGGTCAAG  

TCAGAGGGGGAAATATGCT  CTCATCTAGGATAGCCACA  

ACATGGAGAGACCTTGTCT  CATGGGAAAGAGGAGGGCT  

ACACAGCAAGTTCCAGGAC  AGGGAGATGGGGTGTTTTT  

CTTGAGTTCAAAGCCAGCT  AGACACTCATGTTACCCAC  

ACACCTTTGATCACAGTGC  TGTCTCTCCAGGCAGAGAC  

AAAGGGACTGGGTAGTGGT  TAGGCACTAGAGTTGAGGA  

CCCAGCACATGTTTTCATT    

CTTCCAAATGCTGGGGTTA    

CACAGAGATATGCTTGCCT    

CACTATGTTAGACCAGGCT    

AGTTTTGGCTAGCCTTGAA    

TTTCTTGGAGACAGGGTCT    

TCTATCCACTAGGCAATGA    

TCAGGCTTACACTTGTGTC    

CAAGAGTGGGGTCATCTGG    

CTGCACAGGGCTTAGATGA    

GTACTGAGCATCTTGGAGC    

AAACAGCGCAAGGGGAGGG    

GCTAAAGGCAGAGGAAGCC    

GGAGAATCCCAGGATTAGG    

ATGGGAGAACATGGCGACC    

CAGACGGGACGTGGAGATT    

 

Supplementary Table 2: qPCR primers probes 

 Forward primer Reverse primer 

RG6 unspliced isoform TACAAGGATGACGATGACAAGG TGAACCAAAGCAGCAGGAG 

RG6 unspliced isoform CAGCCACACATCCTGAGAGC AGCAGAGGTGGAGAGATGGA 

RG6 spliced isoform TCCGGAAGAATTCAGGTCAGGAG  GCGCATGAACTCCTTGATGAC 

RG6 spliced isoform TACCCGGATCTAGAGGTCAGGAG GCGCATGAACTCCTTGATGAC 



 

Supplementary Note 1: Quantification of smFISH dot intensity 

 
Image acquisition 
We used confocal microscopy to image FISH probes in Z-stacks with a step size of 0.2um. This 

step size is small enough to capture the maximum intensity of the FISH dot (Figure S1b). As 

demonstrated previously, the Z-maximum projection is comparable to 3D fitting1. In the 

following steps, we will use Z-maximum projection, instead of 3D fitting, to simplify the 

quantification of dot intensity.    

Dot identification 
We first performed a 2D Gaussian wavelet transform on the original image, a step comparable 

to the conventional filtering protocol in most FISH dot-counting methods2. Specifically, the 

transformed image equals: 

𝐻𝑖0,𝑗0 = ∑(𝐷𝑖,𝑗 − 𝐵𝑖,𝑗)G𝑖−𝑖0,𝑗−𝑗0;𝜎

𝑖,𝑗

 

where 𝐷𝑖,𝑗 is the original intensity at pixel (i, j); G𝑖−𝑖0,𝑗−𝑗0;𝜎 is a truncated 2D Gaussian filter, 

defined as G∆𝑖,∆𝑗;𝜎 =
1

2𝜋𝜎2 𝑒
− 

∆𝑖2+∆𝑗2

2𝜎2  , ∆𝑖, ∆𝑗 ≤ 7; and B𝑖,𝑗 is the local background around pixel 

(i, j), defined as B𝑖,𝑗 = ∑ (𝐷𝑖−𝑝,𝑗−𝑞)(∑𝐺)/𝑛7
𝑝,𝑞=−7 , where ∑𝐺 ≅ 1, 𝑛 = 225 (i.e. the area 

covered by the truncated 2D Gaussian filter), and 𝜎 ≅ 1 (i.e. the approximate value of the 

Gaussian standard deviation of a real smFISH dot). This step selected all potential FISH dots in 

the local area, including ‘real’ FISH dots as well as background-level dots.  

FISH dot intensity fitting 
After identifying the location of dots in each channel by wavelet transform, we chose a window 

centered on the selected dots in the original image, and then fit the raw fluorescent intensity. 

The fitting process was adapted from astrophysics for estimating stellar luminosities in crowded 

star fields3, specifically using asymmetric 2D Gaussian integral with angle (𝜃): 
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To deal with crowding of fluorescent dots in the image, we implemented a method used in 

stellar photometry of crowded star fields3. This method has two stages. In the first stage, one 

iteratively fits an image containing stars or, in this case, dots with a 2D Gaussian intensity 

distribution, removes it from the image, and then repeats this process for the next star or dot. 

This continues until the intensity of the putative dot falls below a threshold (here, 10% of the 

first integrated dot intensity), producing a set of m possibly overlapping Gaussian objects. In the 

second stage, one re-fits the original image to a linear combination of m Gaussians, whose 

positions are constrained to be close to the positions identified in the first stage (Figure S1c).  

 

https://paperpile.com/c/POmQKn/8K0j
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Supplementary Note 2: Quantifying intensity unit in each fluorescent channel 
 
Fitting the intensity unit by a continuous analog of Poisson distribution 
We fit the histogram of dot intensity with a continuous Poisson curve: 

𝑃 =
𝑃0 (

𝑥
𝑥0

)
𝜆
𝑒−𝜆

𝛤 (
𝑥
𝑥0

+ 1)
 

Here, 𝑃 is the probability of distribution (i.e. y-axis of the histogram), and 𝑥 is the the intensity 

of dots (i.e. x-axis of the histogram). The 𝑥 value at the maximum 𝑃 is the intensity unit (Figure 

3b and Figure S1d). Note that the histogram did not explicitly exclude the TAS. However, 

because they represent only one dot out of thousands, in the tail of the distribution (Figure 3b 

and S1d), they do not affect the calibration significantly. 

Obtaining the unbiased distribution of dot intensity in three channels 

As described in the main text, we included some background-level dots in each channel to avoid 

dot-identification bias among different channels. For the background-subtraction method, we 

used the ‘fmincon’ function in Matlab to find the best Poisson fit parameters for the 

background-subtracted histogram (Figure 3a). To characterize the error of this method, we 

performed >100 fittings with varying sizes of the histogram bin and randomly picked subsets of 

the dot-intensity data to create histograms. As shown in Figure 3c, the variance of the obtained 

intensity units was less than 10% in all three channels. For the dot-colocalization method, 

despite the involvement of background dots, the probability of misclassifying a true background 

dot as a transcript was low, because misclassification requires at least co-localized background 

dot in another channel.  

Picking background dots  

The number of included background-level dots should not be substantially beyond the number 

of visible FISH dots. Otherwise, the histograms of background+foreground dots would be very 

similar to the histograms of background dots, making it impossible to perform the background-

subtraction method. In addition, the chance to misclassify co-localized background dots to RNA 

transcripts would become high, distorting the measured intensity unit. In this paper, the 

number of involved background dots was comparable to (or less than) the number of visible 

FISH dots in each channel.  

The fitting properties of background dots and classified dots 

As shown in the figures below, the intensities of background dots were in general lower than 

the intensities of classified dots, but with some exceptions. These high-intensity background 

dots were due to two types of ‘bad’ dots: hot pixels (high fitting peak [A] with low sigma 

[𝜎𝑥, 𝜎𝑦]), and dim speckle (low A with high 𝜎𝑥, 𝜎𝑦). This could be seen by the anti-correlation 

between fitting peak (A) and sigma (𝜎𝑥, 𝜎𝑦) for background dots. In contrast to background 

dots, for foreground dots, sigma (𝜎𝑥, 𝜎𝑦) was independent from peak (A). Two more differences 

existed when comparing fitting properties of foreground dots to background dots: (1) the 

distribution of angle (𝜃), 𝜎𝑥 versus 𝜎𝑦, and center cx versus cy of classified dots 



 



 



were smaller, and (2) the fitting peak (A) of classified dots was more comparable to its local 

maximum of filtered image (H). These features of fitted dots indicate that true smFISH dots fall 

into a more reasonable ranges of 2D Gaussian fit parameters. 

Comparison to conventional FISH quantification  

As described in the main text, the background dots and classified dots had overlapping 

distributions on the values of local maximum of filtered image (H) and fitting peak (A) and 

would therefore be indistinguishable via conventional FISH protocol, which involves setting a 

threshold on H to identify FISH dots. Note that the other fit parameters, sigma (𝜎𝑥, 𝜎𝑦), center 

(cx, cy) and angle (𝜃), were also overlapping. Consequently, setting parameter thresholds also 

cannot reduce rate of identifying false positive dots. Thus, our method is crucial to obtaining 

unbiased intensity unit in multiple channels.  

 

Supplementary Note 3: ‘Economy of scale’ measurements 

Data heterogeneity: the presence of ‘negative’ splicing efficiency 

In principle, splicing efficiency (1 – NI/NE1) should always be positive, because the number of 

total transcripts NE1 cannot be smaller than the number of pre-spliced transcripts NI. However, 

when the number of transcripts was quantified only based on the intensity of bound probes, 

the exact number of bound Exon1 probes could be less than the number of bound Intron 

probes at some transcription active sites (TASs) due to the stochastic binding of smFISH probes. 

Thus, for these TASs, measured NE1 could be smaller than NI, resulting in an observed data 

points with ‘negative’ splicing efficiency and increasing the heterogeneity of splicing efficiency 

calculation.  

Data heterogeneity: transcriptional bursting 

Apart from the noise of experimental measurements, intrinsic ‘transcriptional bursting’ and 

extrinsic noise upstream of the transcription are also responsible for the cell-to-cell differences. 

Previous work has established a general model in which gene expression occurs through 

stochastic bursts and quantitative expression level distributions can be used to infer the burst 

rate and mean burst size2. As shown in Figure S7, the induction of our promoter (Tet-on CMV) 

primarily affects burst size, which are similar from those reported previously.   

Data heterogeneity: geometric mean versus arithmetic mean 

Apart from the stochastic binding of smFISH probes and transcriptional bursting, two other 

aspects could be responsible for the heterogeneity of the data points in Figure 4 and Figure S2: 

cell-cell variability and the static measurement (in fixed cells) of instantaneous splicing 

efficiency. To average out these sources of stochastic noise, we compute the geometric mean, 

because taking the arithmetic mean distorts the calculation and can even generate false-

positive ‘economy of scale’ observations. We illustrate this point via a proof-of-concept 

example below. Set the true number of Intron and Exon1 value NI, NE1 =2. If the measured NI, 

NE1 = {1,2,3} (due to noise), the arithmetic mean of NI/NE1, i.e. (1/1 + 1/2 + 1/3 + 2/1 + 2/2 + 2/3 

+ 3/1 + 3/2 + 3/3)/9, equals 1.22, and the geometric mean equals 1. If the measured NI, NE1 = 

{0.5, 1, 1.5, 2, 2.5, 3}, the arithmetic mean increases to 1.43, and the geometric mean still 

https://paperpile.com/c/MlQkTn/0hph+qqLm


equals 1. The change of arithmetic mean is due to the fractional nature of splicing efficiency: 

the denominator is more sensitive to stochastic noise at lower levels. Using the geometric 

mean helped eliminate the uneven effect of noise in the denominator and numerator values on 

the calculation of splicing efficiency. 

TAS classification 

We classified TASs based on co-localization of smFISH dots and the brighter dot intensity 

(Figure 2a).  However, our method cannot perfectly distinguish low-expression TASs (i.e. 

dimmer smFISH dots) from dispersed unspliced transcripts. Here we set a specific condition to 

classify TAS: either Ni > 2.5, or NI + NE1 + NE2 > 5. We chose the threshold based on the intensity 

distribution of single transcripts (Figure 3b and Figure S1d). In addition, we discarded the TASs 

with many emerging single transcripts, because this condition reflects different residence times 

of isoforms at the TAS, which is difficult to resolve in our protocol (discussed further in 

Supplementary Note 4). 

DNA-FISH 

We validated our observation of ‘economy of scale’ regulation by combining RNA- and DNA-

FISH. False positives could be observed when misclassifying unspliced transcripts as TASs, 

because the splicing efficiency of any unspliced transcripts should always be zero, distorting the 

curve towards zero at low-transcription levels. To rule out this possibility, we repeated our 

experiments in combination with DNA-FISH. Specifically, we first performed RNA-FISH as 

previously described, and then did DNA-FISH in the same cells (SI Methods and Materials). We 

used the DAPI channel to register these images, and identified TASs by co-localization of both 

RNA- and DNA-FISH dots. Although fewer data points were acquired due to the complexity of 

these experiments, we observed the same ‘economy of scale’ effect (Figure S3). 

‘Hardness ratio’ correction  

Due to the spurious correlation between NE1 and (1-NI/NE1), using a single measurement of 

transcription level NE1 produces a false-positive ‘economy of scale’ observation (Figure S4a). A 

similar effect occurs for the control measurement (NE2 versus (1-NE1/NE2)) as well. As described 

in the main text, we can eliminate the effect by using two independent transcription-level read-

outs. Another possible solution is to use ‘hardness of ratio’ correction methods4,5. Converting 

NI/NE1 to NI/NE1(1+1/aNE1+2/a2N2
E1), and NE1/NE2 to NE1/NE2(1+1/aNE2+2/a2N2

E2) corrects the 

false-positive ‘economy of scale’ observation (Figure S4b). 

 

Supplementary Note 4: A mechanism for ‘economy of scale’ 
 
A phenomenological model for ‘economy of scale’ 

As described in the main text, we proposed a model of non-uniform enzyme accessibility to 

explain the ‘economy of sale’ observation, where non-uniform enzyme accessibility represents 

a non-linear cooperativity between transcription and splicing factor recruitment. As shown in 

Figure S6a, when pre-mRNAs have a uniform enzyme accessibility (i.e. constant kon) in the 

Michaelis-Menten model, the splicing efficiency should be close to 1 at low transcription levels 

https://paperpile.com/c/POmQKn/Q6c1+sUEk


due to sufficient available enzymes and should only decrease at very high transcription levels 

due to enzyme titration in the system. In contrast, the non-uniform enzyme-accessibility model 

gives rise to the ‘economy of scale’ effect. (For simplicity, we consider here a model in which kon 

is proportional to S, the available pre-mRNA, but other forms will have qualitatively similar 

results.) The splicing efficiency is close to zero at low expression levels, because there are too 

few pre-mRNAs to recruit sufficient splicing enzymes. When transcription level increases, the 

enzyme accessibility, and thus the splicing efficiency also increases, generating the ‘economy of 

scale’ behavior. Though the exact mechanism of this non-linear cooperativity remains unclear, 

analyzing protein liquid-liquid phase separation is a possible direction to pursue. Of note, these 

two models only differ at low transcription levels. At very high transcription levels, the curves 

overlap due to the enzyme titration effect in the system (Figure 5b and Figure S6a). Within our 

experimental system, we have not observed this titration effect by overexpressing a single 

target gene. This indicates that the physiological transcription level is not sufficient to titrate 

the splicing machinery in the cell. 

Simulation of the Michaelis-Menten model 

Based on Figure 5a, we have: 

[
 
 
 
 
 
 
 
 
 
 
 

𝐸𝑒𝑥𝑡 + 𝐸 + 𝐸𝑆 =  𝐸0

𝑑

𝑑𝑡
𝐸𝑒𝑥𝑡 = −𝐷𝑖𝑛 ∙ 𝐸𝑒𝑥𝑡 + 𝐷𝑜𝑢𝑡 ∙ 𝐸𝑆

𝑑

𝑑𝑡
𝐸 = −𝑘𝑜𝑛 ∙ 𝐸 ∙ 𝑆 + 𝑘𝑚 ∙ 𝐸𝑆 + 𝑘𝑜𝑓𝑓 ∙ 𝐸𝑆

𝑑

𝑑𝑡
𝑆 = 𝑏 − 𝑘𝑜𝑛 ∙ 𝐸 ∙ 𝑆 + 𝑘𝑜𝑓𝑓 ∙ 𝐸𝑆 − 𝑘𝑢 ∙ 𝑆

𝑑

𝑑𝑡
𝑚 = 𝑘𝑚 ∙ 𝐸𝑆 − 𝑔𝑚 ∙ 𝑚

𝑑

𝑑𝑡
𝑢 = 𝑘𝑢 ∙ 𝑆 − 𝑔𝑢 ∙ 𝑢

 

The total level of enzymes (i.e. splicing factors) E0 = E + ES + Eext remains constant in the cell, 

due to auto-regulation of splicing factors6. Dout and Din are the diffusion rates of splicing factors 

‘out’ and ‘in’ from the TAS, b is the transcription rate. S is the substrate (i.e. pre-mRNA). m is 

the mRNA (i.e. spliced isoform), u is the unspliced isoform, kon and koff are the binding and 

unbinding rates of splicing factors, km is the production rate of mRNA, gu and gm are the 

degradation rates of unspliced isoform and mRNA respectively.  

At steady state, we set the time derivatives to zero and have: 

[

𝑏 − 𝑘𝑚 ∙ 𝐸𝑆 − 𝑔𝑢 ∙ 𝑆 = 0

𝐾 ∙ 𝑆 ∙
𝐸0 − 𝐸𝑆

1 + 𝑟𝐷
− 𝐸𝑆 = 0

𝑘𝑚 ∙ 𝐸𝑆 − 𝑔𝑚 ∙ 𝑚 = 0

 



where  𝑟𝐷 =
𝐷𝑜𝑢𝑡

𝐷𝑖𝑛
  and 𝐾 =

𝑘𝑜𝑛

𝑘𝑚+𝑘𝑜𝑓𝑓
. The splicing efficiency at the TAS is represented by 

𝑚

𝑆+𝐸𝑆+𝑢+𝑚
=

𝑏−𝑔𝑢𝑆

𝑔𝑚

𝑆+
𝑏−𝑔𝑢𝑆

𝑘𝑚
+

𝑘𝑢
𝑔𝑢

𝑆+
𝑏−𝑔𝑢𝑆

𝑔𝑚

 . Figure 5a was obtained by setting 𝑘𝑢 = 0.1, 𝑘𝑚 = 10, 𝑔𝑢 =

0.1, 𝑔𝑚 = 0.1, 𝑟𝐷 = 10, 𝐸0 = 1500, and 𝐾 = 0.5. We modeled non-uniform enzyme 

accessibility by modifying 𝐾 =
𝑘𝑜𝑛

𝑘𝑚+𝑘𝑜𝑓𝑓
.  To  

𝑘𝑜𝑛

𝑘𝑚+𝑘𝑜𝑓𝑓
 ∙ 𝑆, where 

𝑘𝑜𝑛

𝑘𝑚+𝑘𝑜𝑓𝑓
 is a constant, achieving 

‘economy of scale’ behavior (Figure 5b and S6a). 

The observation of ‘economy of scale’ and ‘diminishing returns’ is not sensitive to parameters  

The difference between ‘economy of scale’ and ‘diminishing returns’ can be represented by the 

‘sign’ of the curve, i.e. splicing efficiency increasing (i.e. positive slope) or decreasing (i.e. 

negative slope) with transcription level. To simply the simulation, we defined the ‘sign’ as the 

difference of splicing efficiency in between b=1 and b=10. As shown in Figure S6c, scanning 

parameter-values only changes the magnitude of the splicing kinetic slope, but not the ‘sign’. 

Measuring the distance between a TAS and its nearest speckle 

As shown in Figure 5C, we targeted Intron and Exon2 regions of RG6 and quantified the splicing 

efficiency as described in the previous section. We then performed immunostaining of splicing 

factor SC35 in the same cell (SI Materials and Methods), and measured the distance between 

each TAS and its nearest speckle (Figure S5a). Specifically, we first normalized the intensity of 

SC35 in each cell, because the total enzyme level should be constant based on the auto-

regulation of splicing factors6, and set an intensity threshold to determine the presence of 

speckles. We then measured the maximum SC35 intensity within a fixed distance of the TAS (in 

unit of pixels). Finally, we identified the distance at which the maximum intensity reached the 

intensity threshold. We then obtained the real distance between the TAS and its nearest 

speckle by multiplying by pixel size (129nm = 1pixel).   

Other possible mechanisms for the ‘economy of scale’ observation  

Modifying the enzyme-binding rate from kon to konS is not the only way to represent non-

uniform enzyme accessibility. In principle, we can also tune the enzyme-diffusion parameter rD, 

replacing 𝑟𝐷 with 𝑟𝐷/𝑆. However, simulation shows that this system behaves in the 

‘diminishing returns’ manner. This result suggests that enzyme diffusion is not a viable 

explanation for the ‘economy of scale’ observation.  

Recent work has shown other factors influencing splicing efficiency. For instance, Bentley et al.7 

showed that polymerase elongation speed is involved in splicing regulation: the faster the 

polymerase speed, the lower the splicing efficiency. To achieve the observed ‘economy of 

scale’, polymerase speed should slow down at high transcription levels. However, this 

assumption does not agree with previous studies7, indicating polymerase elongation speed is 

not a possible mechanism for ‘economy of scale’ behavior. In addition, Luco et al.8 have 

recently found that epigenetics also influences splicing regulation. However, the dynamics of 

epigenetic changes are normally on the order of days9, not consistent with our experimental 

timeframe (a few hours). Thus, we can rule out the effects of epigenetics as well. 

https://paperpile.com/c/POmQKn/a0BA
https://paperpile.com/c/POmQKn/7Xvn
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The other concern is from our experimental design. Our method measured the numbers of the 

different transcripts at the TAS and used them to calculate splicing efficiency. However, 

different transcripts could have different residence times at the TAS: the spliced mature RNA 

can only release from the TAS after coupling 5’ capping and polyadenylation10,11, while spliced 

introns could diffuse out much faster. This difference influences the number of transcripts at 

the TAS and could thus impact the splicing efficiency measurement. To investigate this issue, 

we modulated the parameters related to residence time (𝑔𝑢 and 𝑔𝑚) in our model. Specifically, 

when scanning 𝑔𝑢 from 0.01 to 10 (i.e. 4 orders of magnitude), the system remains in the 

‘economy of scale’ pattern (Fig. S9c). However, when 𝑔𝑢 and/or 𝑔𝑚 depend on the total 

amount of transcripts (S + m + u + ES) at the TAS, the ‘economy of scale’ behavior occurs. 

Although our system cannot measure different residence times of transcripts at the TAS, we 

addressed this issue (i.e. differences in residence times) indirectly. For two cells with 

comparable TAS, as shown in Figure S8, we observed many single transcripts diffusing out from 

one TAS (bottom cell) but no obvious transcripts from the other (top cell). This diffusion pattern 

could reflect the residence time of transcripts to some extent. However, we do not have a 

convincing model to convert the diffusion pattern to residence time. To rule out the effects of 

different residence times, we sought to quantify only the TASs without single transcripts 

spreading (as discussed in “TAS classification”). Additionally, to ensure that the economy of 

scale phenomenon is robust to the effects of different residence time, we quantified the ratio 

between spliced and unspliced isoforms of RG6 across various transcription levels by qPCR (Fig. 

S9). This independent measurement, which includes isoforms outside the TAS, thus minimizing 

the contribution of different residence time, produced a similar ‘economy of scale’ behavior. 

 

https://paperpile.com/c/POmQKn/ZTWN+6t0v
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